Profinite posets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Universal Domain Technique for Profinite Posets

1. I N T R O D U C T I O N . For our purposes a domain equation has the form X = F(X) where F is an operator on a class of semantic domains (typically, F is an endofunctor on a category C). The solution of such equations is a major component of the Scott-Strachey approach to programming language semantics. The reader is refered to [23] or any other reference on denotational semantics for an exp...

متن کامل

Profinite Monads, Profinite Equations, and Reiterman's Theorem

Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite products, subalgebras and quotients. In this paper Reiterman’s theorem is generalised to finite Eilenberg-Moore algebras for a monad T on a variety D of (ordered) algebras: ...

متن کامل

Profinite semigroups

We present a survey of results on profinite semigroups and their link with symbolic dynamics. We develop a series of results, mostly due to Almeida and Costa and we also include some original results on the Schützenberger groups associated to a uniformly recurrent set.

متن کامل

Profinite Groups

γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...

متن کامل

Profinite automata

Many sequences of p-adic integers project modulo p to p-automatic sequences for every α ≥ 0. Examples include algebraic sequences of integers, which satisfy this property for every prime p, and some cocycle sequences, which we show satisfy this property for a fixed p. For such a sequence, we construct a profinite automaton that projects modulo p to the automaton generating the projected sequenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1972

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700044415